Skip to content
Image of the Logo
  • Our Science
    • Research
    • Publications
  • People
    • Faculty
      • Current
      • Former
    • Coordination
    • Scientific Advisory Board
    • PhD Students
      • Current
      • Alumni
  • News & Events
    • News
    • Events
  • Your PhD
    • Registration
    • Thesis Advisory Committee
    • Training
    • Graduation
  • PhD Life
  • Join Us
Menu
  • Our Science
    • Research
    • Publications
  • People
    • Faculty
      • Current
      • Former
    • Coordination
    • Scientific Advisory Board
    • PhD Students
      • Current
      • Alumni
  • News & Events
    • News
    • Events
  • Your PhD
    • Registration
    • Thesis Advisory Committee
    • Training
    • Graduation
  • PhD Life
  • Join Us

Interferons reshape the 3D conformation and accessibility of macrophage chromatin

iScience 25, 103840
iScience 25, 103840
123

Engagement of macrophages in innate immune responses is directed by type I and type II interferons (IFN-I and IFN-γ, respectively). IFN triggers drastic changes in cellular transcriptomes, executed by JAK-STAT signal transduction and the transcriptional control of interferon-stimulated genes (ISG) by STAT transcription factors. Here, we study the immediate-early nuclear response to IFN-I and IFN-γ in murine macrophages. We show that the mechanism of gene control by both cytokines includes a rapid increase of DNA accessibility and rearrangement of the 3D chromatin contacts particularly between open chromatin of ISG loci. IFN-stimulated gene factor 3 (ISGF3), the major transcriptional regulator of ISG, controlled homeostatic and, most notably, induced-state DNA accessibility at a subset of ISG. Increases in DNA accessibility correlated with the appearance of activating histone marks at surrounding nucleosomes. Collectively our data emphasize changes in the three-dimensional nuclear space and epigenome as an important facet of transcriptional control by the IFN-induced JAK-STAT pathway.

Figures:

Full article

Most Popular

2021

In vitro reconstitution of Sgk3 activation by phosphatidylinositol 3-phosphate

J Biol Chem 297(2) 100919

D. Pokorny, L. Truebestein, K. D. Fleming, J. E. Burke, and T. A. Leonard

J Biol Chem 297(2) 100919
D. Pokorny, L. Truebestein, K. D. Fleming, J. E. Burke, and T. A. Leonard
2021

Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency

EMBO J 40:e105776

A. Lackner, R. Sehlke, M. Garmhausen, G. G. Stirparo, M. Huth, F. Titz-Teixeira, P. van der Lelij, J. Ramesmayer, H. F. Thomas, M. Ralser, L. Santini, E. Galimberti, M. Sarov, A. F. Stewart, A. Smith, A. Beyer, and M. Leeb

EMBO J 40:e105776
A. Lackner, R. Sehlke, M. Garmhausen, G. G. Stirparo, M. Huth, F. Titz-Teixeira, P. van der Lelij, J. Ramesmayer, H. F. Thomas, M. Ralser, L. Santini, E. Galimberti, M. Sarov, A. F. Stewart, A. Smith, A. Beyer, and M. Leeb
  • Impressum
  • Datenschutzerklärung
  • SMICH - Proudly created by Webhikers