Skip to content
Image of the Logo
  • Our Science
    • Research
    • Publications
  • People
    • Faculty
      • Current
      • Former
    • Coordination
    • Scientific Advisory Board
    • PhD Students
      • Current
      • Alumni
  • News & Events
    • News
    • Events
  • Your PhD
    • Registration
    • Thesis Advisory Committee
    • Training
    • Graduation
  • PhD Life
  • Join Us
  • Our Science
    • Research
    • Publications
  • People
    • Faculty
      • Current
      • Former
    • Coordination
    • Scientific Advisory Board
    • PhD Students
      • Current
      • Alumni
  • News & Events
    • News
    • Events
  • Your PhD
    • Registration
    • Thesis Advisory Committee
    • Training
    • Graduation
  • PhD Life
  • Join Us

Atg4 proteolytic activity can be inhibited by Atg1 phosphorylation

Nat Commun 8, 295
Nat Commun 8, 295
123

The biogenesis of autophagosomes depends on the conjugation of Atg8-like proteins with phosphatidylethanolamine. Atg8 processing by the cysteine protease Atg4 is required for its covalent linkage to phosphatidylethanolamine, but it is also necessary for Atg8 deconjugation from this lipid to release it from membranes. How these two cleavage steps are coordinated is unknown. Here we show that phosphorylation by Atg1 inhibits Atg4 function, an event that appears to exclusively occur at the site of autophagosome biogenesis. These results are consistent with a model where the Atg8-phosphatidylethanolamine pool essential for autophagosome formation is protected at least in part by Atg4 phosphorylation by Atg1 while newly synthesized cytoplasmic Atg8 remains susceptible to constitutive Atg4 processing.

Full article

Most Popular

2021

In vitro reconstitution of Sgk3 activation by phosphatidylinositol 3-phosphate

J Biol Chem 297(2) 100919

D. Pokorny, L. Truebestein, K. D. Fleming, J. E. Burke, and T. A. Leonard

J Biol Chem 297(2) 100919
D. Pokorny, L. Truebestein, K. D. Fleming, J. E. Burke, and T. A. Leonard
2021

Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency

EMBO J 40:e105776

A. Lackner, R. Sehlke, M. Garmhausen, G. G. Stirparo, M. Huth, F. Titz-Teixeira, P. van der Lelij, J. Ramesmayer, H. F. Thomas, M. Ralser, L. Santini, E. Galimberti, M. Sarov, A. F. Stewart, A. Smith, A. Beyer, and M. Leeb

EMBO J 40:e105776
A. Lackner, R. Sehlke, M. Garmhausen, G. G. Stirparo, M. Huth, F. Titz-Teixeira, P. van der Lelij, J. Ramesmayer, H. F. Thomas, M. Ralser, L. Santini, E. Galimberti, M. Sarov, A. F. Stewart, A. Smith, A. Beyer, and M. Leeb
  • Impressum
  • Datenschutzerklärung
  • SMICH - Proudly created by Webhikers
Manage Cookie Consent
We use cookies to optimize our website and our service.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Preferences
{title} {title} {title}